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FDA challenges and opportunities

I Ideally, one observes several (sometimes many) curves/images/signals

I Ideally, data represent the continuous time measurements of sample paths from a
same stochastic process

I A challenge is then to find the suitable parsimonious representations of the data
I the ‘optimal’ representations are usually determined by the purpose of the analysis
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FDA challenges and opportunities

I Real data are
I discretely observed, possibly at random points, which may be sparsely distributed
I noisy measurements

I Another challenge is then to recover the curves in a suitable way
I the quality of the recovery will influence the quality of the subsequent

inference/prediction methods
I the meaning of ‘optimal recovery’ depends on the application!

I Solutions come from the replication structure of the functional data
I one observes several (sometimes many) curves/images/signals
I data are generated by sample paths of a same stochastic process
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Sample path regularity – a key concept

I Data: (randomly) discrete time noisy measurements of the curves
I Recover the curves

I A nonparametric regression problem where optimality depends on the curve
regularity; see, e.g., Tsybakov (2009)

I Estimate the mean and the covariance
I The optimal rates depend on the curve regularity; see, e.g., Cai and Yuan (2010,

2011, 2016)

I Fit usual predictive models (linear...)
I The optimal convergence rates depend on the predictor curve regularity; see, e.g.,

Hall and Horowitz (2007)
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Mean and covariance functions

I Let X be a random function taking values in L2(T )

I Assume E(‖X‖) <∞. The mean function (curve) is

∀t ∈ T , µ(t) = E[X (t)]

I Assume E(‖X‖2) <∞. The covariance function: ∀t, s ∈ T ,

Γ(t, s) = E [{X (t)− µ(t)}{X (s)− µ(s)}]

I The covariance operator is the continuous linear operator C : L2(T )→ L2(T )
defined by

C (y)(t) =

∫

T
Γ(t, s)y(s)ds
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Eigenvalues decrease rate

I In FDA literature, the sample paths regularity is usually hidden in the decrease
rate for the eigenvalues of the covariance operator

I Usual condition
λj ∼ j−ν , j ≥ 1,

for some ν > 1

I The value of ν is usually supposed given!
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Observed data

I Let X (1), . . . ,X (N) be an independent sample of a random process
X = (X (t) : t ∈ T ) with continuous trajectories

I For each 1 ≤ n ≤ N
I Mn is a random positive integer
I T

(n)
m ∈ T , 1 ≤ m ≤ Mn be the (random) observation times, design points, for the

curve X (n)

I The observations are (Y
(n)
m ,T

(n)
m ), 1 ≤ m ≤ Mn, 1 ≤ n ≤ N, where

I
Y (n)
m = X (n)(T (n)

m ) + σ(T (n)
m ,X (n)(T (n)

m ))e(n)
m

I e
(n)
m are independent copies of a standardized error term
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Aims

I We aim to
I estimate X (n)(t) for an arbitrary point t ∈ T and for each n;
I calculate mean curve estimate µ̂(t), t ∈ T ;
I calculate covariance function estimate Γ̂(·, ·), s, t ∈ T ;
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Local regularity

I Let O? be a neighborhood of t

I For Ht ∈ (0, 1), and Lt > 0, assume that the stochastic process X satisfies the
condition:

E(Xu − Xv )2 � L2
t |v − u|2Ht , whenever u and v belong to O?

I Ht is called the local regularity of the process X on O?

I Our parameter Ht is related to Hurst exponent

I The definition extends to smoother sample paths using the derivatives of Xu and
Xv instead
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Local regularity vs. eigenvalue decrease rate

I The (local) regularity is related to the decrease rate of the eigenvalues of the
covariance operator of the process

I Under some conditions, if
λj ∼ j−ν , j ≥ 1,

for some ν > 1, then
2(H + δ) = ν − 1

when the sample paths admit derivative up to order δ and H is the regularity of
the derivatives of order δ
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Estimation

I For s, t ∈ O?, let

θ(s, t) = E
[
(Xt − Xs)2

]
≈ L2|t − s|2Ht0 .

I Let t1 and t3 be such that [t1, t3] ⊂ O?, and denote t2 the middle point of [t1, t3].

I A natural proxy of Ht0 is given by

log(θ(t1, t3))− log(θ(t1, t2))

2 log 2
, if t3 − t1 is small.
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Estimation

I For s, t ∈ O?, let

θ(s, t) = E
[
(Xt − Xs)2

]
≈ L2|t − s|2Ht0 .

I Let t1 and t3 be such that [t1, t3] ⊂ O?, and denote t2 the middle point of [t1, t3].

I An estimator of Ht0 is given by

log(θ̂(t1, t3))− log(θ̂(t1, t2))

2 log 2
, if t3 − t1 is small.

where, given a nonparametric estimator X̃t of Xt ,

θ̂(s, t) =
1

N

N∑

n=1

(
X̃

(n)
t − X̃

(n)
s

)2

.
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Unfeasible estimators

I If the realizations of the process were observed, the estimators of the mean and
covariance functions would be

µ̃N(t) =
1

N

N∑

n=1

X (n)(t), t ∈ T ,

Γ̃N(s, t) =
1

N − 1

N∑

n=1

(
X (n)(s)− µ̃N(s)

)
(X (n)(t)− µ̃N(t)), s, t ∈ T .
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Estimator of the mean function

I For any t ∈ T , let

WN(t, h) =
N∑

n=1

wn(t, h).

I The estimator of the mean function is

µ̂N(t, h) =
1

WN(t, h)

N∑

n=1

wn(t, h)X̂ (n)(t), t ∈ T .

I An adaptive optimal bandwidth is

ĥ?µ = Cµ(Nm)−1/(1+2Ĥt).

I Note µ̂? the estimation of the mean using the bandwidth ĥ?µ.
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N = 40, m = 100 N = 100, m = 100 N = 200, m = 100

N = 40, m = 40 N = 100, m = 40 N = 200, m = 40
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Figure 1: ISE with respect to the true mean function µ
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Estimator of the covariance function

I For any s 6= t, let

WN(s, t, h) =
N∑

n=1

wn(s, h)wn(t, h).

I The estimator of the covariance function is, for |s − t| > δ,

Γ̂N(s, t, h) =
1

WN(s, t, h)

N∑

n=1

wn(s, h)X̂ (n)(s)wn(t, h)X̂ (n)(t)− µ̂?(s)µ̂?(t).

I An adaptive optimal bandwidth is

ĥ?Γ = CΓ(Nm)−1/(1+2 min(Ĥs ,Ĥt)).
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Estimator of the diagonal band of the covariance function

I The previous estimator can be used only outside the diagonal set.

I The covariance function estimator of the diagonal band, for |s − t| ≤ δ is defined
as

Γ̂N(s, t, h) =
1

WN(u, h)

N∑

n=1

wn(u, h) ̂(X (n))2(u)− µ̂?2
N (u, h), u = (s + t)/2

=
1

WN(u, h)

N∑

n=1

wn(u, h){Y (n)
m }2W

(n)
m (u, h)− Ê

[
σ2(u,Xu)

]
− µ̂?2

N (u)
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Figure 2: ISE with respect to the true covariance function Γ
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Take away ideas

I The available data in FDA are usually noisy measurements at a discrete, possibly
random design points

I The usual FDA methods require the reconstruction of the curves

I The optimal curve recovery depends on the purpose, but in most cases depends
on the regularity of the sample paths

I We formalize the concept of local regularity of the process, propose a first simple
estimator for it and mean and covariance function.

I A preprint of the paper for the estimation of the regularity is available at

https://arxiv.org/abs/2009.03652

I A preprint of the paper for the estimation of the mean and covariance functions is
available at

https://arxiv.org/abs/2108.06507
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