Adaptive optimal estimation of irregular mean and covariance functions

Steven Golovkine^{1,2}, Nicolas Klutchnikoff³, Valentin Patilea²

¹Groupe Renault ²CREST, Ensai ³IRMAR, Université Rennes 2

CFE-CMStatistics Virtual Conference, 18-20 December 2021

FDA challenges and opportunities

- Ideally, one observes several (sometimes many) curves/images/signals
- Ideally, data represent the continuous time measurements of sample paths from a same stochastic process
- > A challenge is then to find the suitable parsimonious representations of the data
 - the 'optimal' representations are usually determined by the purpose of the analysis

FDA challenges and opportunities

Real data are

- discretely observed, possibly at random points, which may be sparsely distributed
- noisy measurements
- Another challenge is then to recover the curves in a suitable way
 - the quality of the recovery will influence the quality of the subsequent inference/prediction methods
 - the meaning of 'optimal recovery' depends on the application!
- Solutions come from the replication structure of the functional data
 - one observes several (sometimes many) curves/images/signals
 - data are generated by sample paths of a same stochastic process

Sample path regularity – a key concept

- Data: (randomly) discrete time noisy measurements of the curves
- Recover the curves
 - A nonparametric regression problem where optimality depends on the curve regularity; see, e.g., Tsybakov (2009)
- Estimate the mean and the covariance
 - The optimal rates depend on the curve regularity; see, e.g., Cai and Yuan (2010, 2011, 2016)
- Fit usual predictive models (linear...)
 - The optimal convergence rates depend on the predictor curve regularity; see, e.g., Hall and Horowitz (2007)

Mean and covariance functions

- Let X be a random function taking values in $L^2(\mathcal{T})$
- ▶ Assume $\mathbb{E}(||X||) < \infty$. The mean function (curve) is

$$orall t \in \mathcal{T}, \qquad \mu(t) = \mathbb{E}[X(t)]$$

▶ Assume $\mathbb{E}(||X||^2) < \infty$. The covariance function: $\forall t, s \in \mathcal{T}$,

$$\mathsf{F}(t,s) = \mathbb{E}\left[\{X(t) - \mu(t)\}\{X(s) - \mu(s)\}\right]$$

The covariance operator is the continuous linear operator C : L²(T) → L²(T) defined by

$$C(y)(t) = \int_{\mathcal{T}} \Gamma(t,s) y(s) ds$$

- In FDA literature, the sample paths regularity is usually hidden in the decrease rate for the eigenvalues of the covariance operator
- Usual condition

$$\lambda_j \sim j^{-
u}, \qquad j \ge 1,$$

for some $\nu > 1$

• The value of ν is usually supposed given!

Observed data

- Let X⁽¹⁾,...,X^(N) be an independent sample of a random process X = (X(t) : t ∈ T) with continuous trajectories
- For each $1 \le n \le N$
 - *M_n* is a random positive integer
 - ▶ $T_m^{(n)} \in \mathcal{T}, 1 \leq m \leq M_n$ be the (random) observation times, design points, for the curve $X^{(n)}$
- ▶ The observations are $(Y_m^{(n)}, T_m^{(n)})$, $1 \le m \le M_n, 1 \le n \le N$, where

 $Y_m^{(n)} = X^{(n)}(T_m^{(n)}) + \sigma(T_m^{(n)}, X^{(n)}(T_m^{(n)}))e_m^{(n)}$

• $e_m^{(n)}$ are independent copies of a standardized error term

Aims

We aim to

- estimate $X^{(n)}(t)$ for an arbitrary point $t \in \mathcal{T}$ and for each *n*;
- calculate mean curve estimate $\widehat{\mu}(t)$, $t \in \mathcal{T}$;
- ► calculate covariance function estimate $\widehat{\Gamma}(\cdot, \cdot)$, $s, t \in \mathcal{T}$;

Local regularity

• Let \mathcal{O}_{\star} be a neighborhood of t

For H_t ∈ (0,1), and L_t > 0, assume that the stochastic process X satisfies the condition:

 $\mathbb{E}(X_u - X_v)^2 \asymp L_t^2 |v - u|^{2H_t}$, whenever u and v belong to \mathcal{O}_{\star}

- H_t is called the local regularity of the process X on \mathcal{O}_{\star}
- Our parameter H_t is related to Hurst exponent
- The definition extends to smoother sample paths using the derivatives of X_u and X_v instead

Local regularity vs. eigenvalue decrease rate

The (local) regularity is related to the decrease rate of the eigenvalues of the covariance operator of the process

Under some conditions, if

$$\lambda_j \sim j^{-\nu}, \qquad j \ge 1,$$

for some $\nu > 1$, then

$$2(H+\delta)=\nu-1$$

when the sample paths admit derivative up to order δ and H is the regularity of the derivatives of order δ

Estimation

▶ For $s, t \in \mathcal{O}_{\star}$, let

$$\theta(s,t) = \mathbb{E}\left[(X_t - X_s)^2\right] \approx L^2 |t-s|^{2H_{t_0}}.$$

▶ Let t_1 and t_3 be such that $[t_1, t_3] \subset \mathcal{O}_{\star}$, and denote t_2 the middle point of $[t_1, t_3]$.

▶ A natural proxy of H_{t_0} is given by

$$\frac{\log(\theta(t_1, t_3)) - \log(\theta(t_1, t_2))}{2 \log 2}, \quad \text{if } t_3 - t_1 \text{ is small}.$$

Estimation

▶ For $s, t \in \mathcal{O}_{\star}$, let

$$heta(s,t) = \mathbb{E}\left[(X_t - X_s)^2\right] pprox L^2 |t-s|^{2H_{t_0}}.$$

▶ Let t_1 and t_3 be such that $[t_1, t_3] \subset \mathcal{O}_{\star}$, and denote t_2 the middle point of $[t_1, t_3]$.

• An estimator of H_{t_0} is given by

$$\frac{\log(\widehat{\theta}(t_1, t_3)) - \log(\widehat{\theta}(t_1, t_2))}{2\log 2}, \quad \text{if } t_3 - t_1 \text{ is small}.$$

where, given a nonparametric estimator $\widetilde{X_t}$ of X_t ,

$$\widehat{\theta}(s,t) = \frac{1}{N} \sum_{n=1}^{N} \left(\widetilde{X_t^{(n)}} - \widetilde{X_s^{(n)}} \right)^2$$

Unfeasible estimators

If the realizations of the process were observed, the estimators of the mean and covariance functions would be

$$\widetilde{\mu}_N(t) = rac{1}{N}\sum_{n=1}^N X^{(n)}(t), \quad t \in \mathcal{T},$$

$$\widetilde{\Gamma}_N(s,t) = rac{1}{N-1}\sum_{n=1}^N \left(X^{(n)}(s) - \widetilde{\mu}_N(s)
ight) (X^{(n)}(t) - \widetilde{\mu}_N(t)), \quad s,t\in\mathcal{T}.$$

Estimator of the mean function

▶ For any
$$t \in \mathcal{T}$$
, let $W_N(t,h) = \sum_{n=1}^N w_n(t,h).$

The estimator of the mean function is

$$\widehat{\mu}_N(t,h) = rac{1}{W_N(t,h)} \sum_{n=1}^N w_n(t,h) \widehat{X}^{(n)}(t), \quad t \in \mathcal{T}.$$

An adaptive optimal bandwidth is

$$\widehat{h}^{\star}_{\mu} = \mathcal{C}_{\mu}(\mathcal{N}\mathfrak{m})^{-1/(1+2\widehat{H}_t)}.$$

▶ Note $\hat{\mu}^{\star}$ the estimation of the mean using the bandwidth \hat{h}^{\star}_{μ} .

Figure 1: ISE with respect to the true mean function μ

Estimator of the covariance function

For any $s \neq t$, let

$$W_N(s,t,h) = \sum_{n=1}^N w_n(s,h)w_n(t,h).$$

• The estimator of the covariance function is, for $|s - t| > \delta$,

$$\widehat{\Gamma}_N(s,t,h) = rac{1}{W_N(s,t,h)}\sum_{n=1}^N w_n(s,h)\widehat{X}^{(n)}(s)w_n(t,h)\widehat{X}^{(n)}(t) - \widehat{\mu}^\star(s)\widehat{\mu}^\star(t).$$

An adaptive optimal bandwidth is

$$\widehat{h}_{\Gamma}^{\star} = C_{\Gamma}(N\mathfrak{m})^{-1/(1+2\min(\widehat{H}_s,\widehat{H}_t))}.$$

Estimator of the diagonal band of the covariance function

- ▶ The previous estimator can be used only outside the diagonal set.
- ▶ The covariance function estimator of the diagonal band, for $|s t| \le \delta$ is defined as

$$\widehat{\Gamma}_{N}(s,t,h) = \frac{1}{W_{N}(u,h)} \sum_{n=1}^{N} w_{n}(u,h) \widehat{(X^{(n)})^{2}}(u) - \widehat{\mu}_{N}^{\star 2}(u,h), \quad u = (s+t)/2$$
$$= \frac{1}{W_{N}(u,h)} \sum_{n=1}^{N} w_{n}(u,h) \{Y_{m}^{(n)}\}^{2} W_{m}^{(n)}(u,h) - \widehat{\mathbb{E}} \left[\sigma^{2}(u,X_{u})\right] - \widehat{\mu}_{N}^{\star 2}(u)$$

Figure 2: ISE with respect to the true covariance function $\boldsymbol{\Gamma}$

Take away ideas

- The available data in FDA are usually noisy measurements at a discrete, possibly random design points
- The usual FDA methods require the reconstruction of the curves
- The optimal curve recovery depends on the purpose, but in most cases depends on the regularity of the sample paths
- ▶ We formalize the concept of local regularity of the process, propose a first simple estimator for it and mean and covariance function.
- ► A preprint of the paper for the estimation of the regularity is available at

https://arxiv.org/abs/2009.03652

A preprint of the paper for the estimation of the mean and covariance functions is available at

https://arxiv.org/abs/2108.06507

References I

- Cai, T. T. and Yuan, M. (2010). Nonparametric Covariance Function Estimation for Functional and Longitudinal Data. *University of Pennsylvania and Georgia institute of technology*, page 36.
- Cai, T. T. and Yuan, M. (2011). Optimal estimation of the mean function based on discretely sampled functional data: Phase transition. *Annals of Statistics*, 39(5):2330–2355.
- Cai, T. T. and Yuan, M. (2016). Minimax and Adaptive Estimation of Covariance Operator for Random Variables Observed on a Lattice Graph. *Journal of the American Statistical Association*, 111(513):253–265.
- Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. *The Annals of Statistics*, 35(1):70–91.
- Tsybakov, A. B. (2009). *Introduction to Nonparametric Estimation*. Springer Series in Statistics. Springer New York, New York, NY.