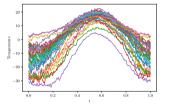
Multivariate functional data clustering using unsupervised binary trees

Steven Golovkine^{1,2}, Nicolas Klutchnikoff³, Valentin Patilea²

¹Groupe Renault ²CREST, Ensai ³IRMAR, Université Rennes 2

Hunter College Mathematics Seminars 3 March 2021

Functional Data Analysis



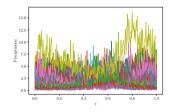


Figure 1: Canadian weather dataset (Ramsay and Silverman, 2005)

Examples

- Spectroscopy;
- Sounds recognition;
- ► Electroencephalography comparison;
- Various sensors.

- Several curves could be recorded simultaneously.
 - e.g., sensors in the autonomous car
- ► Several curves and images could be available.
 - e.g., medical data
- ► The curves/images are measured at discrete points.
 - ▶ And not necessarily the same for each observation unit.
- ▶ The measures are noisy and the noise could be heteroscedastic.

Functional Data and not Time Series

- ▶ In some situations, one may think data look like time series this is not the spirit of FDA (Functional Data Analysis).
- ▶ In FDA, one should use the so-called *replication* and *regularization* features of functional data.
 - More precisely, one should combine information both across and within curves.
 - There is no need to impose usual structures from TSA (stationarity, unit root, etc).
- In particular, the design of the observation times matters! It will influence the curve reconstruction error.

Model

Let

$$\mathcal{T} := [0,1]$$
 and $\mathcal{H} := L^2(\mathcal{T}) \times \cdots \times L^2(\mathcal{T}).$

▶ We are interested by independent realizations of the P-dimensional stochastic process

$$X = \left\{ (X^{(1)}(t_1), \dots, X^{(P)}(t_P)) : t_1, \dots, t_P \in \mathcal{T} \right\}$$

taking values in \mathcal{H} .

- ▶ Note $\langle \langle \cdot, \cdot \rangle \rangle$ the inner product in \mathcal{H} .
- ▶ We aim to develop a clustering procedure to find some meaningfull partition of realizations of the process *X*.

A mixture model for curves

Let K be a positive integer, and let Z be a discrete random variable taking values in $\{1, \ldots, K\}$ such that

$$\mathbb{P}(Z=k)=p_k$$
 with $p_k>0$ and $\sum_{k=1}^K p_k=1$.

 \triangleright We consider that the stochastic process X admits the following decomposition:

$$X(\mathbf{t}) = \sum_{k=1}^K \mu_k(\mathbf{t}) \mathbf{1}_{\{Z=k\}} + \sum_{j\geq 1} \xi_j \phi_j(\mathbf{t}), \quad \mathbf{t} \in \mathcal{T},$$

where

- \blacktriangleright $\mu_1, \ldots, \mu_K \in \mathcal{H}$ are the mean curves per cluster.
- \blacktriangleright $\{\phi_i\}_{i\geq 1}$ in an orthonormal basis of \mathcal{H} .
- ▶ For each $1 \le k \le K$, $\xi_j | Z = k \sim \mathcal{N}(0, \sigma_{kj}^2)$, for all $j \ge 1$.

Lemma

Assume X admits the previous decomposition. Let $\{\psi_j\}_{j\geq 1}$ be another orthonormal basis in \mathcal{H} and consider

$$c_j = \langle\!\langle X - \mu, \psi_j \rangle\!\rangle, \quad j \geq 1 \quad ext{where} \quad \mu(\cdot) = \sum_{k=1}^K p_k \mu_k(\cdot).$$

Then,

$$c_i|Z=k\sim \mathcal{N}(m_{kj},\tau_{ki}^2),$$

where

$$m_{kj} = \langle \langle \mu_k - \mu, \psi_j \rangle \rangle$$
 and $\tau_{kj}^2 = \sum_{l>1} \langle \langle \phi_l, \psi_j \rangle \rangle^2 \sigma_{kl}^2$.

▶ In general, the clusters will be preserved after expressing the realizations of the process into an orthonormal basis.

The data

- Let $X_n, n \in \{1, ..., N\}$ be independent trajectories of X.
- In practice, such trajectories cannot be observed at any t.
- ► Moreover, only noisy data are available:
 - \blacktriangleright the observed values on the trajectory $X_n(\cdot)$ are contaminated with additive errors.
- For any $1 \le n \le N$, $1 \le p \le P$, we observe $M_n^{(p)} \ge 2$ random pairs $(T_{n,m}^{(p)}, Y_{n,m}^{(p)})$ which are defined as:

$$Y_{n,m}^{(p)} = X_n^{(p)}(T_{n,m}^{(p)}) + \epsilon_{n,m}^{(p)}, \quad m = 1, \dots, M_n^{(p)}$$

where

- $iglt \left(T_{n,1}^{(p)},\ldots,T_{n,M_n}^{(p)}
 ight)$ are i.i.d. random sampling points in \mathcal{T} ;
- $ightharpoonup \epsilon_{n,m}^{(p)}$ are i.i.d. random errors.

Example of such data

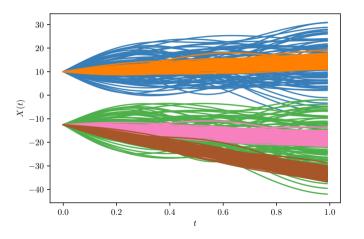


Figure 2: Example of data.

fCUBT

- ▶ Let $S = \{X_1, ..., X_N\}$ be a sample of realizations of the process X.
- \blacktriangleright We consider the problem of learning a meaningfull partition $\mathcal U$ of $\mathcal S$.
- For that, the idea is to build a full binary tree using a topdown procedure by recursive splitting.
- ▶ The procedure is based on Fraiman et al. (2010), adapted to functional data.
- ▶ The splitting criterion is similar to the one from Pelleg and Moore (2000).

How to split a node?

Given a training sample S of realizations of X.

- 1. Perform a MFPCA with n_{comp} components and get the associated eigenvalues and eigenfunctions Φ .
- 2. Build the matrix C of the projection of the element of S onto the elements Φ .
- 3. For each $k = 1, ..., K_{max}$, fit a k-components GMM using an EM algorithm on the columns of C. The models are denoted by $\{\mathcal{M}_1, ..., \mathcal{M}_{K_{max}}\}$.
- 4. Estimate the number of mixture components \widehat{K} as

$$\widehat{K} = \arg\max_{k=1,...,K_{max}} \mathsf{BIC}(\mathcal{M}_k).$$

5. If $\widehat{K} > 1$, we split the node in two using the model \mathcal{M}_2 .

- ► The construction of a branch of the tree is stopped if one of the following criterion is true:
 - ▶ The estimation of K is equal to 1.
 - ▶ There are less than minsize elements in the node.
- ► Three hyperparameters have to be set by the user:
- ightharpoonup n_{comp} The number of components to keep for the MFPCA.
 - K_{max} The maximum number of components to consider for the mixture model.
 - ▶ minsize The minimal number of elements in a node to be considered to be split.

Example of a tree

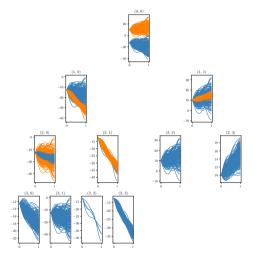


Figure 3: Example of a grown tree.

How to join nodes?

Given a set of terminal nodes V from the construction of the tree.

1. Build the graph $\mathcal{G} = (V, E)$ such that

$$E = \{(A, B)|A, B \in V, A \neq B \text{ and } \widehat{K}_{A \cup B} = 1\}.$$

- 2. Associate to each element of E the value of the BIC that corresponds to $\widehat{K}_{A\cup B}$.
- 3. Remove the edge with the maximum BIC value and replace the associated vertices by their union.
- 4. Continue the procedure by applying 1. with

$$V = \{V \setminus \{A, B\}\} \cup \{A \cup B\}$$

until E is empty or V is reduced to a unique element.

Example of Canadian weather dataset

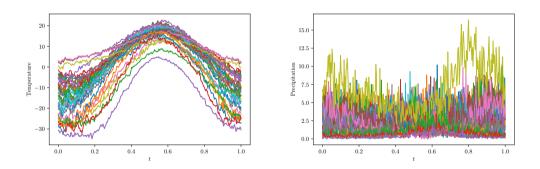


Figure 4: Canadian weather dataset (Ramsay and Silverman (2005))

Example of Canadian weather dataset

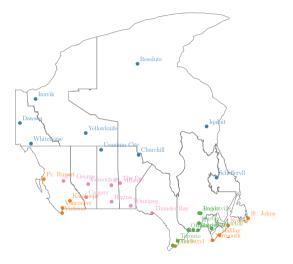


Figure 5: Clustering results using fCUBT

Example: rounD dataset

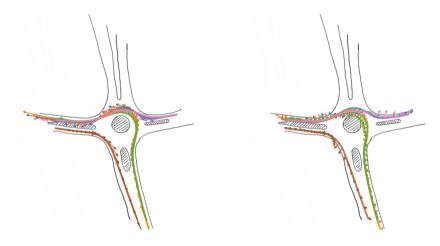


Figure 6: Sample of trajectories in the rounD dataset.

Example: rounD dataset

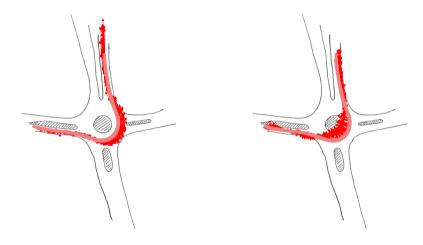


Figure 7: Example of clusters.

Example: rounD dataset

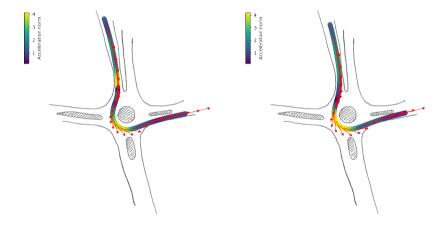


Figure 8: Two clusters with the same enter/exit.

Extension to images

Let

$$\mathcal{T} := [0,1]^d$$
 and $\mathcal{H} := L^2(\mathcal{T})$.

▶ We are interested by independent realizations of the stochastic process

$$X = \{(X(\mathbf{t}) : \mathbf{t} \in \mathcal{T}\}\$$

taking values in \mathcal{H} .

We assume a tensor rank decomposition for the matrix of observation $\mathbf{X} \in \mathbb{R}^{N \times S_1 \times S_2}$ containing all X_n with $S_1 \times S_2$ pixels:

$$\mathbf{X} = \sum_{j=1}^{J} c_j u_j \circ v_j \circ w_j,$$

where c_j is a scalar, $u_j \in \mathbb{R}^N$, $v_j \in \mathbb{R}^{S_1}$ and $w_j \in \mathbb{R}^{S_2}$.

Extension to images

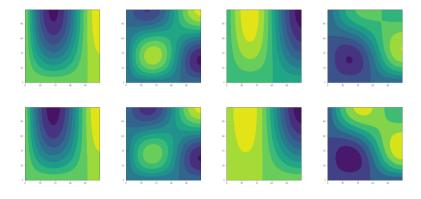


Figure 9: Examples of generated images.

Extension to images

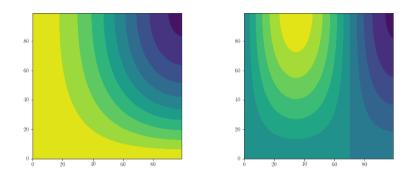


Figure 10: Eigenimages of $v_j \circ w_j$ of the data.

Takeaway ideas

- Model-based clustering of functional data:
 - multivariate functional data in both input and output dimension;
 - noisy data;
 - random discrete measurement points;
 - unknown number of groups.
- Prediction for new observation is easy.
- A preprint of the paper is available at

https://arxiv.com/abs/2012.05973

An implementation of the fCUBT procedure is available at

https://github.com/StevenGolovkine/FDApy

References I

- Fraiman, R., Ghattas, B., and Svarc, M. (2010). Clustering using Unsupervised Binary Trees: CUBT. *Computing Research Repository CORR*.
- Pelleg, D. and Moore, A. (2000). X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In *In Proceedings of the 17th International Conf. on Machine Learning*, pages 727–734. Morgan Kaufmann.
- Ramsay, J. and Silverman, B. W. (2005). *Functional Data Analysis*. Springer Series in Statistics. Springer-Verlag, New York, 2 edition.