class: center, middle, inverse, title-slide .title[ # Functional multilevel modelling of the influence of the menstrual cycle on the performance of female cyclists ] .subtitle[ ##
] .author[ ###
S. Golovkine
· T. Chassard · A. Meigné · E. Brunet · J.-F. Toussaint · J. Antero ] .institute[ ### 37th International Workshop on Statistical Modelling ] .date[ ### July 18th, 2023 ] --- # Hormonal fluctuations <br><br><br> <figure> <center> <img src="data:image/png;base64,#./img/menstrual_cycle.svg" alt="cycle" width="120%"/> <figcaption>Schema of a menstrual cycle (adapted from <a href='https://doi.org/10.1007/s40279-020-01319-3'>McNulty et al., 2020</a>).<figcaption> </center> </figure> --- # Cycling <div class="row"> <div class="column"> <center> <img src="data:image/png;base64,#./img/route.jpg" alt="route" width="90%"/> <figcaption>Road<figcaption> </center> </div> <div class="column"> <center> <img src="data:image/png;base64,#./img/piste.jpg" alt="track" width="90%"/> <figcaption>Track<figcaption> </center> </div> <div class="column"> <center> <img src="data:image/png;base64,#./img/crosscountry.jpg" alt="crosscountry" width="90%"/> <figcaption>Cross-country<figcaption> </center> </div> </div> --- # Estimation of the phases * Athletes have been asked to report the beginning and the end of their bleeding for each period. * We estimate their ovulation day using a robust linear regression model based on their cycle length (<a href='https://doi.org/10.1093/hropen/hoaa011'>Soumpasis et al., 2020</a>). * The menstrual cycle is then split in three phases: - Menstruations - Follicular - Luteal --- # Power Data <figure> <center> <img src="data:image/png;base64,#./img/1.svg" alt="observation" width="80%"/> <figcaption>Examples of data recorded from training.<figcaption> </center> </figure> --- # Mean Maximal Power Curves * Consider some generic exercise which last `\(T\)` seconds. * Let `\(Z = \{z_t, t = 1, 2, \dots, T\}\)` a sequence of observation of the power output. * Assume that, given `\(t_1, t_2\)` two timestamps such that `\(t_2 > t_1\)`, `\(t_2 - t_1\)` is constant. * An MMP curve is defined as `$$X(t) = \max_{t_2 - t_1 = t} \frac{z_{t_1} + \cdots + z_{t_2}}{t_2 - t_1}.$$` --- # Mean Maximal Power Curves <br> <figure> <center> <img src="data:image/png;base64,#./img/ppr_wkg_natural.svg" alt="ppr" width="100%"/> <figcaption>MMP per phase.<figcaption> </center> </figure> --- # Mean and standard deviation per phase <figure> <center> <img src="data:image/png;base64,#./img/golovkine_ppr_mean.svg" alt="mean_ppr" width="47.5%"/> <img src="data:image/png;base64,#./img/golovkine_ppr_std.svg" alt="std_ppr" width="47.5%"/> <figcaption>Mean and standard deviation per phase.<figcaption> </center> </figure> --- # Model * MMP curves consist of random realizations from a stochastic process `\(X = \{X(t) : t \in [1, T]\}\)` with continuous trajectories. * We consider the following model `$$X_{jklmn}(t) = \mu_k(t) + B_{jk}(t) + C_{lk}(t) + D_{mk}(t) + E_{jklmn}(t)$$` where * `\(X_{jklmn}(t)\)`: MMP output for a particular observation. * `\(\mu_k(t)\)`: fixed effect for the phase of the menstrual cycle. * `\(B_{jk}(t)\)`: phase-specific functional random intercept accounting for athlete. * `\(C_{lk}(t)\)`: phase-specific functional random intercept accounting for training intensity. * `\(D_{mk}(t)\)`: phase-specific functional random intercept accounting for bike type. * `\(E_{ijl}(t)\)`: smooth error term accounting for observation-specific variability. --- # Mean comparison * We are interested in testing the following hypothesis: `$$(H_0): \mu_k = \mu_{k^\prime} \quad\text{v.s}\quad (H_1): \mu_k \neq \mu_{k^\prime}$$` * We consider the test statistic: `$$S_N = \frac{N_k N_{k^\prime}}{NT} \int_{T} \{\mu_k(t) - \mu_{k^\prime}(t)\}^2 \mathrm{d}t$$` * The sampled bootstrap statistics, under the assumption of equality of the mean curves, are compared to `\(S_N\)` computed on the observed data. --- # Mean comparison <br> <figure> <center> <img src="data:image/png;base64,#./img/golovkine_hist_mean_comparison.svg" alt="mean_comp" width="100%"/> </center> </figure> --- # Variance decomposition Following <a href='https://edoc.ub.uni-muenchen.de/22121/1/Cederbaum_Jona.pdf'>Cederbaum (2017)</a>: * Standardize the curves per phase. * Estimate the covariance of each random effects. * Perform an eigendecomposition of the covariances. * Estimate the variability induced by each random effects. --- # Variance decomposition <table> <tr> <th>Variability source</th> <th>Variance explained (in `\%`)</th> </tr> <tr> <td>Phase</td> <td>`2.41 \times 10^{-3}`</td> </tr> <tr> <td>Athlete</td> <td>`22.0`</td> </tr> <tr> <td>RPE</td> <td>`11.5`</td> </tr> <tr> <td>Bike type</td> <td>`16.6`</td> </tr> <tr> <td>Observation</td> <td>`49.8`</td> </tr> <tr> <td>Error variance</td> <td>`6.60 \times 10^{-11}`</td> </tr> <caption>Full variance decomposition using a functional random intercept for phase with variance explained of `99.999%`.</caption> </table> --- # Takeaway ideas * Power output data exhibits the variable nature of performance in women's professional cycling. * We have not proven that there is no variation between phases, we have failed to find evidence of variation between phases. * The athletes are likely to achieve their peak performance in each phase. * These results may be helpful for coaches who use these curves for training planning or the comprehension of their athletes. <br> <h2 style="color:#005844;"><center>Thank you for your attention!</center></h2> --- # References <p><cite><a id='bib-cederbaumFunctionalLinearMixed2017'></a><a href="#cite-cederbaumFunctionalLinearMixed2017">Cederbaum, J.</a> (2017). “Functional linear mixed models for complex correlation structures and general sampling grids”. Text.PhDThesis.</cite></p> <p><cite><a id='bib-mcnultyEffectsMenstrualCycle2020'></a><a href="#cite-mcnultyEffectsMenstrualCycle2020">McNulty, K. L., K. J. Elliott-Sale, E. Dolan, et al.</a> (2020). “The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis”. In: <em>Sports Medicine</em> 50.10, pp. 1813–1827. ISSN: 1179-2035. DOI: <a href="https://doi.org/10.1007/s40279-020-01319-3">10.1007/s40279-020-01319-3</a>.</cite></p> <p><cite><a id='bib-soumpasisReallifeInsightsMenstrual2020'></a><a href="#cite-soumpasisReallifeInsightsMenstrual2020">Soumpasis, I., B. Grace, and S. Johnson</a> (2020). “Real-Life Insights on Menstrual Cycles and Ovulation Using Big Data”. In: <em>Human Reproduction Open</em> 2020.2. DOI: <a href="https://doi.org/10.1093/hropen/hoaa011">10.1093/hropen/hoaa011</a>. pmid: pmid. URL: <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164578/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164578/</a> (visited on Jul. 18, 2023).</cite></p>