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Introduction
Nowadays, a vehicle records a lot of information about its environment
through his different sensors (camera, radar and lidar). More particularly, it
registers some characteristics about vehicles around him at high frequency.
These characteristics can be the longitudinal and lateral position, the accel-
eration, the size, the type of vehicle for instance. All the information are
recorded relatively to the considered vehicle. We define a driving scene
as a small period, say T , during which we record the environment of the
car. This environment is constitued by an certain number of vehicles, say
P, whose one records a certain number of characteristics, say D. However,
we do not assume that all of the P vehicles are recorded on the complete
interval T , but only on a subset of it. So, an observation of a scene can be
represented as a random vector of functions:

Z =
(

Z(p,d)(t) : t ∈ T (p), 1 ≤ p ≤ P, 1 ≤ d ≤ D
)
∈ RP×D, T (p) ⊂ T .

Moreover, Z(p,d) is assumed to be in L2(T (p)) for all p ∈ q
1, P

y
. So, realiza-

tions of Z are multivariate functional data which are defined on different
domains. We aim to analyze such data.

Methodology
Mathematical model
Consider the following mathematical model for independant realizations
Zi =

(
Z(p,d)

i (·) : 1 ≤ p ≤ P, 1 ≤ d ≤ D
)

, 1 ≤ i ≤ n of Z:

Z(p,d)
i (t) = η(d)(t) + v(p,d)

i (t) + ε
(p,d)
i (t), t ∈ T . (1)

The P × D-dimensional trajectories,
(

v(p,d)
i (·)

)
and

(
ε
(p,d)
i (·)

)
, are un-

observed independant realizations of zero mean multivariate stochastic
processes. The processes η(d) are deterministic processes. We denote by
γv(s, t), s, t ∈ T the covariance structure of the multivariate process corre-
sponding to v(p,d)

i that we aim to identify.
In practice, the data are not recorded continously. Denote by Gi = {ti,j :

1 ≤ j ≤ mi} the design points of Zi. So, the sampling of the equation (1) is
written:

Z(p,d)
i (ti,j) = η(d)(ti,j) + v(p,d)

i (ti,j) + ε
(p,d)
i (ti,j), 1 ≤ j ≤ mi, 1 ≤ i ≤ n. (2)

Multivariate functional principal components analysis
Smoothing. A smoothing is performed on all the curves. It has two pur-

poses. The first one is to remove the eventual noise in the measurements
as the sensors are assumed to not record exactly the reality. Secondly, as
the functions are defined on different domains, we use change-of-time
methods to put them on a common interval, for instance [0, 1]. Here, con-
sider that the functions are already defined on a same domain and we
focus on retrieving the signals from the noisy curves. Following Zhang
and Chen (2007), we use Local Polynomial Kernel smoothing for the re-
construction of the curves and adopt the method of Goldenshluger and
Lepski (2011) for the bandwidth selection.

Functional Principal Components Analysis. Dimension reduction is done
using multivariate functional principal components analysis, as proposed
by Happ and Greven (2018). The idea is to write all the observations of
the scenes into a common multivariate basis of functions. In fact, by the
multivariate version of the Karhunen-Loève expansion:

Z(t) = µµµ(t) +
∞

∑
j=1

cjΦΦΦj(t), (3)

where µµµ =
(

E(Z(1)), . . . , E(Z(P))
)

is the mean vector of each function,
{ΦΦΦj}j≥1 are the multivariate eigenfunctions found by an eigenanalysis of
the covariance operator of Z and the cj are the projection of Z onto ΦΦΦj.
In practice, we truncate the KL expansion at M terms. However, it is
known that in general the KL truncated decomposition is optimal in term
of expected quadratic error given the dimension M. Usually, M is chosen
to explain a certain percentage of variance (95% or 99% generally) of the
data. So, our multivariate functions Z are summarized by M coefficients
which capture both the information on the curves of each vehicle in the
scene, as well as the correlation between the vehicles’ curves.

Clustering. Classical clustering algorithms are used with the set of coeffi-
cient. In particular, one can cite the k-means algorithm and the spectral
clustering algorithm. We consider some appropriate metric in order to
take into account the variability of the data in the coefficients.

Tests on simulation
In order to demonstrate the performance of the methodology, we have tried
it on simulation. So, we generated different signals that correspond to real

driving situations: overtaking (figure 1a) and cut-in (insertion in the vehicle
lane, figure 1b). Moreover, the number of overtaking or cut-in by the left is
much more important than the ones by the right. This setting corresponds
to P = 1 and D = 2 (one vehicle and two features) in the model 1, and we
simulate n = 500 independent realizations of the process Z.
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Figure 1: Examples of simulation
The results of the multivariate functional principal components analysis

are shown in the figure 2. This graphs represent the multivariate eigenfunc-
tions of the Karhunen-Loève decomposition. These eigenfunctions explain
95% of the variability in the data.
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Figure 2: Eigenfunctions of the K-L expansion
The figure 3a represents the projection of the multivariate signals into the

first principal plan defined by the two first multivariate eigenfunctions. The
colors are the predicted class for each of the signal. As we do simulation, we
have the true class of each signal, and thus we can compute some metrics
to measure method’s performance. As we consider non-supervised classi-
fication, we can not say which class is overtaking and which is cut-in. So,
we manually look at the signals to say that. The algorithm gave the right
class in 87% of the time (figure 3b).
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Figure 3: Results of the clustering
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