On the influence of the menstrual cycle on the performance of female cyclists

A functional multilevel modelling approach

S. Golovkine · T. Chassard · A. Meigné · E. Brunet · J.-F. Toussaint · J. Antero National Sport and Human Performance Conference September 29th, 2023

Cycling

Cross-country

Hormonal fluctuations

Days

Schema of a menstrual cycle (adapted from McNulty et al., 2020).

Power Data

Menses - Endurance

Example of data recorded from training.

Mean Maximal Power Curves

5 / 10

Model

- MMP curves consist of random realizations from a stochastic process $X = \{X(t) : t \in [1,T]\}$ with continuous trajectories.
- We consider the following model

$$X_{jklmn}(t) = \mu_k(t) + B_{jk}(t) + C_{lk}(t) + D_{mk}(t) + E_{jklmn}(t)$$

where

- $\circ X_{jklmn}(t)$: MMP output for a particular observation.
- $\circ \ \mu_k(t)$: fixed effect for the phase of the menstrual cycle.
- $\circ \; B_{jk}(t)$: phase-specific functional random intercept accounting for athlete.
- $\circ C_{lk}(t)$: phase-specific functional random intercept accounting for training intensity.
- $\circ D_{mk}(t)$: phase-specific functional random intercept accounting for bike type.
- $\circ E_{ijl}(t)$: smooth error term accounting for observation-specific variability.

Mean comparison

Variance decomposition

Full variance decomposition using a functional random intercept for phase with variance explained of **99.999** % .

Variability source Variance explained (in %)

Phase	2.41×10^{-3}
Athlete	22.0
RPE	11.5
Bike type	16.6
Observation	49.8
Error variance	6.60×10^{-11}

Takeaway ideas

- Power output data exhibits the variable nature of performance in women's professional cycling.
- We have not proven that there is no variation between phases, we have failed to find evidence of variation between phases.
- The athletes are likely to achieve their peak performance in each phase.
- These results may be helpful for coaches who use these curves for training planning or the comprehension of their athletes.

Thank you for your attention!

References

Cederbaum, J. (2017). *"Functional linear mixed models for complex correlation structures and general sampling grids"*. *Text.PhDThesis.*

McNulty, K. L., K. J. Elliott-Sale, E. Dolan, et al. (2020). "The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis". In: Sports Medicine 50.10, pp. 1813–1827. ISSN: 1179-2035. DOI: 10.1007/s40279-020-01319-3.

Soumpasis, I., B. Grace, and S. Johnson (2020). "Real-Life Insights on Menstrual Cycles and Ovulation Using Big Data". In: Human Reproduction Open 2020.2. DOI: 10.1093/hropen/hoaa011. pmid: pmid. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164578/ (visited on Jul. 18, 2023).