class: center, middle, inverse, title-slide .title[ # On the influence of the menstrual cycle on female athlete performance ] .subtitle[ ## A case study of cycling ] .author[ ### Juliana Antero · Tom Chassard ·
Steven Golovkine
· Alice Meigné ] .institute[ ### SIM Talk ] .date[ ### September 19, 2023 ] --- # Presentation of the project <br><br><br> <figure> <center> <img src="data:image/png;base64,#./img/menstrual_cycle.svg" alt="cycle" width="100%"/> <figcaption>Schema of a menstrual cycle (adapted from <a id='cite-mcnultyEffectsMenstrualCycle2020'></a>(<a href='https://doi.org/10.1007/s40279-020-01319-3'>McNulty, Elliott-Sale, Dolan, Swinton, Ansdell, Goodall, Thomas, and Hicks, 2020</a>)).<figcaption> </center> </figure> --- # Cycling <figure> <center> <img src="data:image/png;base64,#./img/cycling.gif" alt="cycling" width="35%"/> </center> </figure> --- # Power Data <figure> <center> <img src="data:image/png;base64,#./img/1.svg" alt="observation" width="100%"/> <figcaption>Examples of data recorded from training.<figcaption> </center> </figure> --- # Mean Maximal Power Curves * Consider some generic exercise which last `\(T\)` seconds. * Let `\(Z = \{z_t, t = 1, 2, \dots, T\}\)` a sequence of observation of the power output. * Assume that, given `\(t_1, t_2\)` two time stamps such that `\(t_2 > t_1\)`, `\(t_2 - t_1\)` is constant. * An MMP curve is defined as `$$X(t) = \max_{t_2 - t_1 = t} \frac{z_{t_1} + \cdots + z_{t_2}}{t_2 - t_1}.$$` --- # Mean Maximal Power Curves <figure> <center> <img src="data:image/png;base64,#./img/ppr_per_phase.svg" alt="ppr" width="100%"/> <figcaption>MMP per phase.<figcaption> </center> </figure> --- # Mean per phase <figure> <center> <img src="data:image/png;base64,#./img/mean_ppr_per_phase.svg" alt="mean_ppr" width="65%"/> <figcaption>Mean per phase.<figcaption> </center> </figure> --- # Standard deviation per phase <figure> <center> <img src="data:image/png;base64,#./img/sd_ppr_per_phase.svg" alt="mean_ppr" width="65%"/> <figcaption>Standard deviation per phase.<figcaption> </center> </figure> --- # Tests for the difference of the means <br><br> <figure> <center> <img src="data:image/png;base64,#./img/follicular-luteal.svg" alt="follicular_luteal" width="32%"/> <img src="data:image/png;base64,#./img/follicular-menses.svg" alt="follicular_menses" width="32%"/> <img src="data:image/png;base64,#./img/menses-luteal.svg" alt="menses_luteal" width="32%"/> <figcaption>Confidence bands for the difference of the means <a id='cite-lieblFastFairSimultaneous2022'></a>(<a href='https://arxiv.org/abs/1910.00131'>Liebl and Reimherr, 2022</a>).<figcaption> </center> </figure> --- # Model * MMP curves consist of random realizations from a stochastic process `\(X = \{X(t) : t \in [1, 7200]\}\)` with continuous trajectories. * We consider the following model `$$X_{ijl}(t) = \mu_j(t) + B_{jl}(t) + E_{ijl}(t)$$` where * `\(X_{ijl}(t)\)`: MMP output for a particular observation. * `\(\mu_j(t)\)`: fixed effect for the phase of the menstrual cycle. * `\(B_{jl}(t)\)`: phase-specific functional random intercept for training. * `\(E_{ijl}(t)\)`: smooth error term accounting for observation-specific variability. --- # Eigenfunctions <br> <figure> <center> <img src="data:image/png;base64,#./img/follicular.svg" alt="follicular" width="48%"/> <img src="data:image/png;base64,#./img/luteal.svg" alt="luteal" width="48%"/> <figcaption>Phase specific means with the functional random intercept for trainings <a id='cite-cederbaumFunctionalLinearMixed2017'></a>(<a href='#bib-cederbaumFunctionalLinearMixed2017'>Cederbaum, 2017</a>).<figcaption> </center> </figure> --- # Takeaway ideas * Power output data exhibits the variable nature of performance in women's professional cycling. * May help the athletes to have a better understanding of their performance regarding their menstrual cycle. * Hard to give a definitive conclusion of the influence of menstrual cycle on the performance here! * Add more menstrual cycles, determine a better classification of the trainings and include a random effect for athletes. --- class: middle, center, inverse # Thanks! --- # References <p><cite><a id='bib-cederbaumFunctionalLinearMixed2017'></a><a href="#cite-cederbaumFunctionalLinearMixed2017">Cederbaum, J.</a> (2017). “Functional linear mixed models for complex correlation structures and general sampling grids”. Text.PhDThesis.</cite></p> <p><cite><a id='bib-lieblFastFairSimultaneous2022'></a><a href="#cite-lieblFastFairSimultaneous2022">Liebl, D. and M. Reimherr</a> (2022). <em>Fast and Fair Simultaneous Confidence Bands for Functional Parameters</em>. DOI: <a href="https://doi.org/10.48550/arXiv.1910.00131">10.48550/arXiv.1910.00131</a>. arXiv: <a href="https://arxiv.org/abs/1910.00131">1910.00131 [math, stat]</a>.</cite></p> <p><cite><a id='bib-mcnultyEffectsMenstrualCycle2020'></a><a href="#cite-mcnultyEffectsMenstrualCycle2020">McNulty, K. L., K. J. Elliott-Sale, E. Dolan, et al.</a> (2020). “The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis”. In: <em>Sports Medicine</em> 50.10, pp. 1813–1827. ISSN: 1179-2035. DOI: <a href="https://doi.org/10.1007/s40279-020-01319-3">10.1007/s40279-020-01319-3</a>.</cite></p>