Multivariate functional data clustering using unsupervised binary trees

Steven Golovkine^{1,2}, Nicolas Klutchnikoff³, Valentin Patilea²

¹Groupe Renault ²CREST, Ensai ³IRMAR, Université Rennes 2

Statistical Modeling with Applications Bucharest, November 2020

Functional Data Analysis

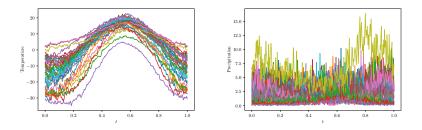


Figure 1: Canadian weather dataset (Ramsay and Silverman, 2005)

Examples

- Spectroscopy;
- Sounds recognition;
- Electroencephalography comparison;
- Various sensors.

Model

Let

 $\mathcal{T} \coloneqq [0,1] \times \cdots \times [0,1] \quad \text{and} \quad \mathcal{H} \coloneqq L^2([0,1]) \times \cdots \times L^2([0,1]).$

 We are interested by independent realizations of the P-dimensional stochastic process

$$X = \{X(\mathbf{t}) : \mathbf{t} \in \mathcal{T}\}$$

taking values in \mathcal{H} .

► We aim to develop a clustering procedure to find some meaningfull partition of realizations of the process *X*.

A mixture model for curves

Let K be a positive integer, and let Z be a discrete random variable taking values in {1,..., K} such that

$$\mathbb{P}(Z=k)=p_k$$
 with $p_k>0$ and $\sum_{k=1}^K p_k=1.$

We consider that the stochastic process X admits the following decomposition:

$$X(\mathbf{t}) = \sum_{k=1}^{K} \mu_k(\mathbf{t}) \mathbf{1}_{\{Z=k\}} + \sum_{j\geq 1} \xi_j \phi_j(\mathbf{t}), \quad \mathbf{t} \in \mathcal{T},$$

where

μ₁,...,μ_K ∈ H are the mean curves per cluster.
{φ_j}_{j≥1} in an orthonormal basis of H.
For each 1 ≤ k ≤ K, ξ_j|Z = k ~ N(0, σ²_{kj}), for all j ≥ 1.

Lemma

Assume X admits the previous decomposition. Let $\{\psi_j\}_{j\geq 1}$ be another orthonormal basis in \mathcal{H} and consider

$$c_j = \langle\!\langle X - \mu, \psi_j
angle, \quad j \ge 1 \quad ext{where} \quad \mu(\cdot) = \sum_{k=1}^K p_k \mu_k(\cdot).$$

Then,

$$c_j|Z=k\sim \mathcal{N}(m_{kj},\tau_{kj}^2),$$

where

$$m_{kj} = \langle\!\langle \mu_k - \mu, \psi_j \rangle\!\rangle$$
 and $\tau_{kj}^2 = \sum_{l \ge 1} \langle\!\langle \phi_l, \psi_j \rangle\!\rangle^2 \sigma_{kl}^2$.

▶ In general, the clusters will be preserved after expressing the realizations of the process into an orthonormal basis.

The data

- Let $X_n, n \in \{1, \ldots, N\}$ be independent trajectories of X.
- In practice, such trajectories cannot be observed at any t.
- Moreover, only noisy data are available:
 - the observed values on the trajectory X_n(·) are contaminated with additive errors.
- For any 1 ≤ n ≤ N, 1 ≤ p ≤ P, we observe M_n^(p) ≥ 2 random pairs (T^(p)_{n,m}, Y^(p)_{n,m}) which are defined as:

$$Y_{n,m}^{(p)} = X_n^{(p)}(T_{n,m}^{(p)}) + \epsilon_{n,m}^{(p)}, \quad m = 1, \dots, M_n^{(p)}$$

where

• $\left(T_{n,1}^{(p)}, \ldots, T_{n,M_n}^{(p)}\right)$ are i.i.d. random sampling points in [0, 1]; • $\epsilon_{n,m}^{(p)}$ are i.i.d. random errors.

Example of such data

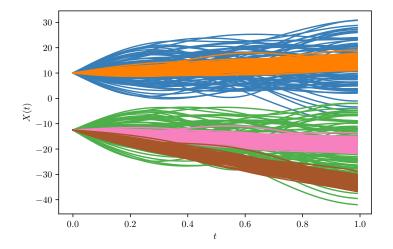


Figure 2: Example of data

fCUBT

- Let S = {X₁,...,X_N} be a sample of realizations of the process X.
- We consider the problem of learning a meaningfull partition U of S.
- For that, the idea is to build a full binary tree using a top-down procedure by recursive splitting.
- The procedure is based on Fraiman et al. (2010), adapted to functional data.
- The splitting criterion is similar to the one from Pelleg and Moore (2000).

How to split a node?

Given a training sample S of realizations of X.

- 1. Perform a fPCA with n_{comp} components and get the associated eigenvalues and eigenfunctions Φ .
- 2. Build the matrix C of the projection of the element of S onto the elements Φ .
- For each k = 1,..., K_{max}, fit a k-components GMM using an EM algorithm on the columns of C. The models are denoted by {M₁,..., M<sub>K_{max}}.
 </sub>
- 4. Estimate the number of mixture components \widehat{K} as

$$\widehat{K} = \arg \max_{k=1,...,K_{max}} \mathsf{BIC}(\mathcal{M}_k).$$

5. If $\widehat{K} > 1$, we split the node in two using the model \mathcal{M}_2 .

The construction of a branch of the tree is stopped if one of the following criterion is true:

• The estimation of K is equal to 1.

There are less than minsize elements in the node.

Three hyperparameters have to be set by the user:

- \triangleright n_{comp} The number of components to keep for the fPCA.
- K_{max} The maximum number of components to consider for the mixture model.
- minsize The minimal number of elements in a node to be considered to be split.

Example of a tree

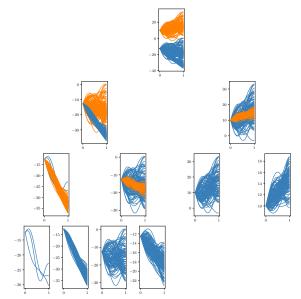


Figure 3: Example of a grown tree

How to join nodes?

Given a set of terminal nodes V from the construction of the tree.

1. Build the graph $\mathcal{G} = (V, E)$ such that

 $E = \{(A, B) | A, B \in V, A \neq B \text{ and } \widehat{K}_{A \cup B} > 1\}.$

- 2. Associate to each element of *E* the value of the BIC that corresponds to $\widehat{K}_{A\cup B}$.
- 3. Remove the edge with the maximum BIC value and replace the associated vertices by their union.
- 4. Continue the procedure by applying 1. with

$$V = \{V \setminus \{A, B\}\} \cup \{A \cup B\}$$

until E is empty or V is reduced to a unique element.

Example of Canadian weather dataset

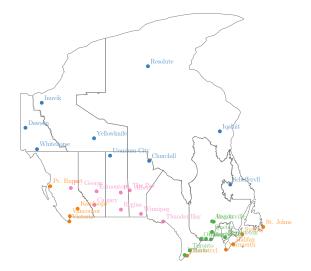


Figure 4: Clustering results using fCUBT

Takeaway ideas

Model-based clustering of functional data:

multivariate functional data;

noisy data;

random discrete measurement points;

unknown number of groups.

Prediction of new observation is easy.

An implementation of the fCUBT procedure is available at https://github.com/StevenGolovkine/FDApy.

THANKS! QUESTIONS?

References I

- Fraiman, R., Ghattas, B., and Svarc, M. (2010). Clustering using Unsupervised Binary Trees: CUBT. *Computing Research Repository - CORR*.
- Pelleg, D. and Moore, A. (2000). X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In In Proceedings of the 17th International Conf. on Machine Learning, pages 727–734. Morgan Kaufmann.
- Ramsay, J. and Silverman, B. W. (2005). *Functional Data Analysis.* Springer Series in Statistics. Springer-Verlag, New York, 2 edition.