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Functional Data Analysis
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Figure 1: Canadian weather dataset (Ramsay and Silverman, 2005)

Examples

I Spectroscopy;

I Sounds recognition;

I Electroencephalography comparison;

I Various sensors.



Model

I Let

T := [0, 1]×· · ·×[0, 1] and H := L2([0, 1])×· · ·×L2([0, 1]).

I We are interested by independent realizations of the
P-dimensional stochastic process

X = {X (t) : t ∈ T }

taking values in H.

I We aim to develop a clustering procedure to find some
meaningfull partition of realizations of the process X .



A mixture model for curves

I Let K be a positive integer, and let Z be a discrete random
variable taking values in {1, . . . ,K} such that

P(Z = k) = pk with pk > 0 and
K∑

k=1

pk = 1.

I We consider that the stochastic process X admits the
following decomposition:

X (t) =
K∑

k=1

µk(t)1{Z=k} +
∑
j≥1

ξjφj(t), t ∈ T ,

where
I µ1, . . . , µK ∈ H are the mean curves per cluster.
I {φj}j≥1 in an orthonormal basis of H.
I For each 1 ≤ k ≤ K , ξj |Z = k ∼ N (0, σ2

kj), for all j ≥ 1.



Lemma
Assume X admits the previous decomposition. Let {ψj}j≥1 be
another orthonormal basis in H and consider

cj = 〈〈X − µ, ψj〉〉, j ≥ 1 where µ(·) =
K∑

k=1

pkµk(·).

Then,
cj |Z = k ∼ N (mkj , τ

2
kj),

where

mkj = 〈〈µk − µ, ψj〉〉 and τ2
kj =

∑
l≥1

〈〈φl , ψj〉〉2σ2
kl .

I In general, the clusters will be preserved after expressing the
realizations of the process into an orthonormal basis.



The data

I Let Xn, n ∈ {1, . . . ,N} be independent trajectories of X .

I In practice, such trajectories cannot be observed at any t.
I Moreover, only noisy data are available:

I the observed values on the trajectory Xn(·) are contaminated
with additive errors.

I For any 1 ≤ n ≤ N, 1 ≤ p ≤ P, we observe M
(p)
n ≥ 2 random

pairs (T
(p)
n,m,Y

(p)
n,m) which are defined as:

Y
(p)
n,m = X

(p)
n (T

(p)
n,m) + ε

(p)
n,m, m = 1, . . . ,M

(p)
n

where
I
(
T

(p)
n,1 , . . . ,T

(p)
n,Mn

)
are i.i.d. random sampling points in [0, 1];

I ε
(p)
n,m are i.i.d. random errors.



Example of such data
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Figure 2: Example of data



fCUBT

I Let S = {X1, . . . ,XN} be a sample of realizations of the
process X .

I We consider the problem of learning a meaningfull partition U
of S.

I For that, the idea is to build a full binary tree using a
top-down procedure by recursive splitting.

I The procedure is based on Fraiman et al. (2010), adapted to
functional data.

I The splitting criterion is similar to the one from Pelleg and
Moore (2000).



How to split a node?

Given a training sample S of realizations of X .

1. Perform a fPCA with ncomp components and get the
associated eigenvalues and eigenfunctions Φ.

2. Build the matrix C of the projection of the element of S onto
the elements Φ.

3. For each k = 1, . . . ,Kmax , fit a k-components GMM using an
EM algorithm on the columns of C . The models are denoted
by {M1, . . . ,MKmax}.

4. Estimate the number of mixture components K̂ as

K̂ = arg max
k=1,...,Kmax

BIC(Mk).

5. If K̂ > 1, we split the node in two using the model M2.



I The construction of a branch of the tree is stopped if one of
the following criterion is true:
I The estimation of K is equal to 1.
I There are less than minsize elements in the node.

I Three hyperparameters have to be set by the user:
I ncomp – The number of components to keep for the fPCA.
I Kmax – The maximum number of components to consider for

the mixture model.
I minsize – The minimal number of elements in a node to be

considered to be split.



Example of a tree
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Figure 3: Example of a grown tree



How to join nodes?

Given a set of terminal nodes V from the construction of the tree.

1. Build the graph G = (V ,E ) such that

E = {(A,B)|A,B ∈ V ,A 6= B and K̂A∪B > 1}.

2. Associate to each element of E the value of the BIC that
corresponds to K̂A∪B .

3. Remove the edge with the maximum BIC value and replace
the associated vertices by their union.

4. Continue the procedure by applying 1. with

V = {V \ {A,B}} ∪ {A ∪ B}

until E is empty or V is reduced to a unique element.



Example of Canadian weather dataset
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Figure 4: Clustering results using fCUBT



Takeaway ideas

I Model-based clustering of functional data:
I multivariate functional data;
I noisy data;
I random discrete measurement points;
I unknown number of groups.

I Prediction of new observation is easy.

I An implementation of the fCUBT procedure is available at

https://github.com/StevenGolovkine/FDApy.

https://github.com/StevenGolovkine/FDApy


THANKS! QUESTIONS?
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