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Abstract: The relation between hormonal fluctuations along menstrual cycles
and physical performance is of particular interest in sport science research. With
the development of sensors technologies, the recording of large scale, high fre-
quency performance data sets is now available. For cycling, performance can be
measured using Mean Maximal Power curve. A functional linear mixed model
is proposed to assess whether performance differs between phases of the men-
strual cycle and how performance varies over the cycle based on the athletes,
training intensities and types of the bike. Our methodology captures the continu-
ous dynamic change characteristic of the data. The results indicate no difference
in average performance between the phases. The performance variability is also
similar for each phase. Most of the performance variability is induced by the
differences between the athletes.
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1 Introduction

Menstrual cycles affect women’s health and wellness. Female sex hormones,
and especially, estradiol and progesterone, fluctuate along the menstrual cy-
cle (see Figure 1). These hormones affect multiple parameters on women
ranging from adverse symptoms, such as fatigue, sleep disturbance or mood
disorders along menstrual cycle phases (Pierson et al., 2021), to many ben-
eficial cardiovascular, muscular and metabolic pa- rameters (Meignié et al.,
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2021). Performance-based research in women sport science is still scarce in
regards to the influence of menstrual cycle phases (Meignié et al, 2021).
Cycling is interesting to analyze the influence of hormonal fluctuation onto
female performance. Mobile power meters are fitted to bicycles to mea-
sure the power delivered by cyclists during training. These data can be
used to monitor and evaluate training performance. Mean Maximal Power
(MMP) curves have been introduced to analyze power output profile at
the individual level (Pinot and Grappe, 2010). MMP curves are defined
as the maximal amount of power a cyclist can produce in a given period
of time. We analyse whether performance, in terms of MMP, is influenced
by the menstrual phases. We study performance variability with respect to
menstrual cycle phases, athletes, rating of perceived exertion (RPE) using
the Borg-CR10 scale (Borg, 1982) and types of the bike. We developed a
functional linear mixed model to answer these questions.
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FIGURE 1. Schematic representation of the phases’ division and hormonal fluc-
tuations for naturally cycling women.

Power output data are recorded at 1Hz by personal powermeter. An MMP
curve is derived from every individual training. Consider an exercise which
last T seconds and Z = {zt}1≤t≤T a sequence of observation of the power
output. Let t1, t2 ∈ [[1, T ]], such that t2 − t1 is constant, an MMP curve is

X(t) = max
t2−t1=t

zt1 + · · ·+ zt2
t2 − t1

, t = 1, . . . , T. (1)

The data collection lasted from February 2021 to November 2022. Eight
high-level female cyclists, with natural cycles, volunteered to participate in
the study. To investigate how the menstrual cycle affects the performance
of female cyclists, we estimated the different phase of the cycle for each
athlete. We asked the cyclists to inform us of the start and end of their pe-
riod, and we used a robust linear regression model (Soumpasis et al., 2020)
to estimate the day of ovulation for each cycle. Their menstrual cycles are
then divided into three phases: the menstruation phase, the follicular phase
(between the end of the bleeding period and the estimated ovulation day),
and the luteal phase (from the estimated ovulation day until the start of the
next period). Prior to participation, all the athletes were informed about
the purpose of the study. All investigations conformed to the code of ethics
of the World Medical Association and were approved by the Institutional
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Ethics Committee. Data collection was compliant with the General Data
Protection Regulation (2016/679) applied in the European Union.

2 Model

The model is a hierarchical model that takes into account that observations
depend on bike types, RPE and athletes and for each athlete we have re-
peated measurements for each of the three phases (menstrual, follicular and
luteal). We assume that the RPE factors and bike type factors are crossed
between athletes. This assumption is reasonnable since the factors are in-
dependent of the considered athlete. The factors are only partially crossed
because we did not observed all the combinations of training intensity and
bike type for all athletes. We consider the following model

Xjklmn(t) = µk(t) +Bjk(t) +Clk(t) +Dmk(t) +Ejklmn(t), t ∈ [[1, T ]], (2)

where j = 1, . . . , 8 (athletes), k = 1, . . . , 3 (phases), l = 0, . . . , 10 (RPE,
Borg-CR10 scale), m = 1, . . . , 4 (bike types), n = 1, . . . , Njklm (obser-
vations). Xjklmn(t) represents the MMP output of the observation n for
athlete j during phase k, training intensity l and bike type m for a period
of t seconds. µk(t) is the fixed effect for the phase of the menstrual cycle.
Bjk(t), Clk(t) and Dmk(t) are a phase-specific functional random intercept
for athletes, for RPE and for bike type respectively. Ejklmn(t) is a smooth
error term accounting for observation-specific variability. Bjk(t), Clk(t),
Dmk(t) and Ejklmn(t) are assumed to be centered and mutually uncorre-
lated. We allows the covariances of the functional random intercepts to be
different for each phase. This assumption is motivated by the intra-phase
variation (Figure 2) and by our aim to characterize this variability. The
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FIGURE 2. Point-wise mean curves (left) and standard deviation curves (right)
per phase on a log-scale.
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comparison of the fixed effects is performed using bootstrap estimation of
the statistics

SN =
NkNk′

NT
||µk − µk′ ||2 =

NkNk′

NT

∫
T
(µk(t)− µk′(t))

2
dt, (3)

where N , Nk and Nk′ are the total number of observations, the number of
observation for phase k and k′ respectively. The sampled bootstrap statis-
tics, under the assumption of equality of the mean curves, are compared to
SN computed on the observed data. The estimation of the composents of
the model is performed following Cederbaum (2017).

3 Results

For the comparison of the fixed effects, we generated 5000 bootstrap sam-
ples such that there is no difference between phases from the observed data
to compare the mean MMP curves of the different phase. For each boot-
strap sample, we computed the test statistic (3) for each combination of
the cycle phases. Histograms of the resulted test statistics are plotted in
Figure 3 with SN computed on the observed data (plain line) and the 95%-
quantile of the distribution of the test statistics computed on the bootstrap
samples (dashed line). The test statistic computed on the observed data
is smaller than the 95%-quantile of the distribution of the test statistics
computed on the bootstrap samples for all phases comparison (Figure 3).
There is thus no evidence of a difference between the phases considering
their mean MMP curves. We fit the model (2) to all data with µk re-
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FIGURE 3. Histogram of the test statistic SN computed on 5000 bootstrap sam-
ples. Difference between menstruation and follicular phases (left), menstruation
and luteal phases (middle), follicular and luteal phases (right).

placed by a functional random intercept for the phases to obtain the full
variance decomposition (Table 1). The curves are standardized and we set
the percentage of variance explained to 99.999%. This decomposition high-
lights the importance of accounting for the different sources of variability
as most of the overall variability is induced by the different observations.
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TABLE 1. Full variance decomposition for a model with a functional random
intercept for phase with pre-specified variance explained of 99.999%.

Variability source Phase Athlete RPE
Variance explained (in %) 2.41× 10−3 22.0 11.5

Variability source Bike type Observation Error variance
Variance explained (in %) 16.6 49.8 6.60× 10−11

The second most important source of variability is induced by the athletes.
It appears that the different phases induce zero variation of power output.
Part of the variability in the MMP curves is due to the training intensity
(11.5%) and the bike type (16.6%). We have however not proven that there
is no variation between phases, we have failed to find evidence of variation
between phases. The athletes are thus likely to achieve their peak perfor-
mance in each phase. These results may be helpful for coaches who use
these curves for training planing or the comprehension of their athletes.
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