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Résumé. La recherche en biomécanique et en mouvement humain implique souvent la
mesure régulière de plusieurs variables cinématiques ou cinétiques tout au long d’un mou-
vement, ce qui produit des données qui se présentent sous la forme de courbes, lisses, mul-
tivariées et variables dans le temps. Ces données se prêtent naturellement à l’analyse des
données fonctionnelles. De plus, il est courant d’enregistrer le même mouvement de manière
répétée pour chaque individu, ce qui permet d’obtenir des courbes corrélées pouvant être
considérées comme des données fonctionnelles longitudinales.

Nous présentons une nouvelle approche de modélisation de données fonctionnelles longitu-
dinales multivariées et hiérarchiques, en l’appliquant à des données cinématiques de coureurs
amateurs recueillies lors d’une course sur tapis roulant. Pour chaque foulée, les angles de la
hanche, des genoux et des chevilles des coureurs sont modélisés conjointement comme des
fonctions multivariées dépendantes de covariables spécifiques au sujet. Des effets aléatoires
fonctionnels multivariés variant longitudinalement sont utilisés pour capturer la dépendance
entre les foulées adjacentes et les changements dans les fonctions multivariées au cours de
la course. Nous représentons chaque observation en la décomposant dans une base en com-
posantes principales fonctionnelles multivariées et nous modélisons les coefficients de base
grâce des modèles scalaires longitudinaux à effets mixtes. Les effets aléatoires prédits sont
utilisés pour comprendre et visualiser les changements dans les données fonctionnelles mul-
tivariées au cours de la course.

Dans notre application, cette méthode nous permet de quantifier les effets des covariables
scalaires sur les données fonctionnelles multivariées. Il en résulte un effet statistiquement
significatif de la vitesse de course au niveau des articulations de la hanche, du genou et de
la cheville. L’analyse des effets aléatoires prédits révèle que la cinématique des individus est
généralement stable, mais certains individus présentent de fortes variations au cours de la
course.

1
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Abstract. Biomechanics and human movement research often involves measuring mul-
tiple kinematic or kinetic variables regularly throughout a movement, yielding data that
present as smooth, multivariate, time-varying curves and are naturally amenable to func-
tional data analysis. It is now increasingly common to record the same movement repeatedly
for each individual, resulting in curves that are serially correlated and can be viewed as
longitudinal functional data.

We present a new approach for modelling multivariate multilevel longitudinal functional
data, with application to kinematic data from recreational runners collected during a tread-
mill run. For each stride, the runners’ hip, knee and ankle angles are modelled jointly as
smooth multivariate functions that depend on subject-specific covariates. Longitudinally
varying multivariate functional random effects are used to capture the dependence among
adjacent strides and changes in the multivariate functions over the course of the treadmill
run. We represent each observation using a multivariate functional principal components
basis and model the basis coefficients using scalar longitudinal mixed effects models. The
predicted random effects are used to understand and visualise changes in the multivariate
functional data over the course of the treadmill run.

In our application, the method quantifies the effects of scalar covariates on the multivariate
functional data, revealing a statistically significant effect of running speed at the hip, knee
and ankle joints. Analysis of the predicted random effects reveals that individuals’ kinematics
are generally stable but certain individuals who exhibit strong changes during the run can
also be identified.

Keywords. Longitudinal functional data analysis, Multivariate functional data, Kine-
matic analysis, Mixed-effects model

1 Introduction

Longitudinal functional data analysis (LFDA) concerns the modelling of the dependence
among functions due to correlation over a longer (or different) timescale than the one on
which they are measured. Examples include daily activity functions measured consecutively
for a number of days for several subjects (Goldsmith et al., 2015) or brain imaging profiles of
patients measured at several hospital visits (Greven et al., 2010), see Park and Staicu (2015).

Our motivating dataset comes from the Dublin City University running injury surveil-
lance (RISC) study, where kinematic data from recreational runners were captured during a
treadmill run with the goal of understanding running technique and its link to injury. We
focus on modelling the sagittal plane hip, knee and ankle angles because the majority of
running-related injuries occur in the lower limbs. During the treadmill run, the kinematic
data were recorded for a large number of consecutive strides for each individual (see Figure
1). They were then segmented into individual strides, as a single stride is considered the
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Figure 1: The right sagittal hip, knee and ankle angles of a single participant in the RISC
dataset for the first ten strides of their treadmill run. The dashed vertical lines indicate touch
down (i.e., when the foot first touches the ground), which represents the start and end of
each stride.

most basic unit of analysis.

In this work, we want to employ a multivariate approach to capture the dependence
among multiple joints (i.e., the hip, knee and ankle angles), rather than performing separate
univariate analyses for each location. From an applied perspective, understanding the de-
pendence (or co-ordination) among multiple joints is crucial for fully describing movement
patterns (Glazier, 2021). Moreover, the participants were measured on both sides of the
body, which adds a hierarchical structure to the data. We also need to include scalar covari-
ate information in our model, e.g., sex, running speed and injury status. This motivates the
development of a multivariate multilevel longitudinal functional model. The dataset contains
more than 40000 multivariate functional observations from 284 unique individuals. To the
best of our knowledge, this is the first piece of work to develop statistical methodology to
appropriately analyse repeatedly observed multivariate kinematic data in human movement
biomechanics.

2 Model

We denote the multivariate functional observation from the lth stride for the ith individual
on side j as

yijl(t) =
(
y
(hip)
ijl (t), y

(knee)
ijl (t), y

(ankle)
ijl (t)

)⊤
, l = 1, . . . nij, j ∈ {left, right} and i = 1, . . . , N,

where N is the total number of individuals, nij is the total number of strides taken by indi-
vidual i on side j, and t ∈ [0, 100] is a normalised functional time interval with 0 representing
the start of a stride and 100(%) representing the end. We also introduce a (normalised) longi-
tudinal time variable T ∈ [0, 1], such that Tijl indexes the time in the treadmill run at which
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stride l occurs on side j for subject i. The start of the treadmill run is at T = 0 and the end
at T = 1. Finally, we let xij = (xij1, . . . , xijA)

⊤ denote the scalar covariates for subject i on
side j. The covariates could be subject specific (e.g., sex, height) or subject-and-side specific
(e.g., an indicator for a subject’s dominant side). We assume that the covariates are fixed
across strides and hence xij is not indexed by l.

Our proposed multivariate multilevel longitudinal functional model is

yijl(t) = β0(t, Tijl) +
A∑

a=1

xijaβa(t) + ui(t, Tijl) + vij(t, Tijl) + εijl(t).

where β0(t, Tijl), ui(t, Tijl) and vij(t, Tijl) are the multivariate intercept function, the subject-
specific and the subject and side-specific multivariate functional random intercepts that varies
smoothly in both functional and longitudinal time, βa(t) is the multivariate functional fixed
effect corresponding to the ath scalar covariate and εijl(t) is the smooth multivariate func-
tional random error that is specific to observation yijl(t). We assume that yijl(t) are centered.

The intercept function β0(t, T ) is assumed to be a smooth bivariate function of both
functional time t and longitudinal time T . For a = 1, . . . , A, the fixed effect βa(t) captures
the influence of the ath scalar covariate on the expected level and shape of the response (Bauer
et al., 2018). We assume that the fixed effects are constant across T , which implies that the
scalar covariates affect the average running kinematics, rather than the kinematics at any
particular point in the treadmill run. For i = 1, . . . , N , the subject-specific random intercept
ui(t, T ) captures correlation among observations from the same subject and the subject-and-
side-specific random intercepts vij(t, T ) capture correlation among observations from the
same subject and side. These functions are assumed to be independent realisations of mean-
zero multivariate Gaussian processes with matrix-valued covariance function Q(t, t′, T, T ′)
and R(t, t′, T, T ′). Finally, the random errors are assumed to be independent realisations of a
zero-mean multivariate Gaussian process with matrix-valued covariance function S(t, t′). The
multivariate functional random error represents the deviation that is specific to observation
yijl(t). It is further assumed that the processes ui(t, T ), vij(t, T ) and εijl(t) are mutually
uncorrelated.

2.1 Basis Representation of the Multivariate Functions

We first represent each multivariate functional observation by a basis expansion

yijl(t) =
K∑
k=1

y⋆ijl,kψk(t).

The basis functions {ψk(t)}Kk=1 are multivariate functions and y⋆ijl,k are scalar basis coeffi-
cients that weight the basis functions to produce the functional observations. The functions
{ψk(t)}Kk=1 are estimated using a multivariate functional principal components analysis (MF-
PCA, Happ and Greven, 2018). We choose K, the number of functions to retain, such that
a high percentage (e.g., 99.5%) of the variance in the data is explained. This allows the
basis coefficients to be treated as transformed data rather than estimated parameters and
modelled in place of the observed multivariate functions (Morris et al., 2011).
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2.2 Modelling the Basis Coefficients

We model the matrix Y⋆ of basis coefficients in place of the observed multivariate functional
data. We make the simplifying assumption that each of the K basis coefficients (i.e., each
column of Y⋆) can be modelled separately (Morris and Carroll, 2006). The model for the
kth basis coefficient is

y⋆ijl,k = β⋆
0,k(Tijl) +

A∑
a=1

xiaβ
⋆
a,k + u⋆

i,k(Tijl) + v⋆ij,k(Tijl) + ε⋆ijl,k, (1)

which is a multilevel functional model in longitudinal time T (Di et al., 2009). We choose to
parameterise the longitudinally varying functions using a small number of unpenalised basis
functions, because changes are expected to be smooth and simple. We also use the same set
of basis functions {ξd(T )}Dd=1 to represent each longitudinally varying term, giving

β⋆
0,k(T ) =

D∑
d=1

β⋆
0,k,d ξd(T ), u⋆

i,k(T ) =
D∑

d=1

u⋆
i,k,d ξd(T ) and v⋆ij,k(T ) =

D∑
d=1

v⋆ij,k,d ξd(T ).

We use a small number of natural cubic B-spline basis functions to represent each term.
Substituting the basis function evaluations into model (1) gives, for the kth basis coefficient,
the model

y⋆ijl,k =
D∑

d=1

β⋆
0,k,d ξd(Tijl) +

A∑
a=1

xiaβ
⋆
a,k +

D∑
d=1

u⋆
i,k,d ξd(Tijl) +

D∑
d=1

v⋆ij,k,d ξd(Tijl) + ε⋆ijl,k,

where (u∗
i,k,1, . . . , u

∗
i,k,D)

⊤ ∼ N (0,Q∗
k), (v

∗
ij,k,1, . . . , v

∗
ij,k,D)

⊤ ∼ N (0,R∗
k) and ε∗ijl,k ∼ N (0, sk).

This is a scalar linear mixed effects model. The matrices Q∗
k and R∗

k are of dimension D×D
and contain D(D + 1)/2 free parameters to estimate.

2.3 Reconstructing the Model Terms

2.3.1 Fixed Effects

Rather than inspect individual parameter estimates, it is more natural to combine the es-
timated parameters across the basis coefficients to reconstruct and estimate the functional
model terms. The estimated intercept function is given by

β̂0(t, T ) =
K∑
k=1

D∑
d=1

β̂⋆
0,k,d ξd(T )ψk(t),

where β̂⋆
0,k,d denotes the estimate of β⋆

0,k,d from the mixed effects model. Likewise, the estimate
of the functional fixed effect of the ath scalar covariate is given by

β̂a(t) =
K∑
k=1

β̂⋆
a,kψk(t), a = 1 . . . , A.
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The estimates of V̂ar(β̂⋆
a,k) from the mixed effects model can be combined across k to construct

approximate pointwise and simultaneous confidence bands for βa(t), as described in (Gunning
et al., 2023).

2.3.2 Covariance Structures

The matrix-valued covariance functions Q(t, t′, T, T ′) and R(t, t′, T, T ′) implied by the model
are

Q(t, t′, T, T ′) = E[ui(t, T ) ui(t
′, T ′)⊤] = Ψ(t)⊤(IK ⊗ ξ(T ))⊤Q∗(IK ⊗ ξ(T ′))Ψ(t′),

R(t, t′, T, T ′) = E[vij(t, T ) vij(t
′, T ′)⊤] = Ψ(t)⊤(IK ⊗ ξ(T ))⊤R∗(IK ⊗ ξ(T ′))Ψ(t′),

where Ψ(t) is the K × 3 matrix containing the basis functions, ξ(T ) = (ξ1(T ), . . . , ξD(T ))
⊤,

Q∗ (resp. R∗) is the block-diagonal matrix containing the matrices Q∗
1, . . . ,Q

∗
K (resp.

R∗
1, . . . ,R

∗
K) along its diagonal. Finally, the within-function covariance is

S(t, t′) = Ψ(t)⊤S∗Ψ(t′), S∗ = diag{s1, . . . , sK}.

2.3.3 Individual Trajectories

Our methodology facilitates the prediction of subject-specific and subject-and-side-specific
trajectories at any point in the treadmill run. The prediction of the subject-specific multi-
variate functional random intercept at any T ∈ [0, 1] is given by

ûi(t, T ) =
K∑
k=1

D∑
d=1

û⋆
i,k,d ξd(T )ψk(t), i = 1, . . . , N,

where û⋆
i,k,d is the Best Linear Unbiased Predictor (BLUP) of u⋆

i,k,d from the linear mixed
effects model. The subject-and-side specific deviation is obtained analogously as

ûi(t, T ) + v̂ij(t, T ) =
K∑
k=1

D∑
d=1

(
û⋆
i,k,d + v̂⋆ij,k,d

)
ξd(T )ψk(t), i = 1, . . . , N, and j ∈ {left, right}.

The predicted trajectories can be used, for example, to investigate change in technique over
the course of the treadmill run as measured by the rate of change with respect to T .

3 Application

3.1 Data Collection, Extraction and Preparation

Recreational runners aged between 18 and 64 years of age with no history of injury in the
last three months were recruited as participants for the RISC study. Prior to the baseline
testing session, in which the kinematic data were collected, the participants completed an
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online survey regarding their injury history, training history and demographics. They ran
for three minutes at a self-selected speed that represented their typical training pace, while
kinematic data were collected using a 17-camera, three-dimensional motion analysis system
for the first full minute of the run. The motion data (i.e., marker trajectories) were sampled
at a rate of 200Hz and filtered using a fourth-order zero-lag Butterworth filter at 15Hz to
smooth out observational errors. From the filtered trajectories, the sagittal plane hip, knee
and ankle angles were extracted bilaterally for the first minute of the treadmill run.

The long sequences of kinematic measurements (e.g., Figure 1) were segmented into indi-
vidual strides based on the initial contact of the foot with the ground, which was identified
using a custom algorithm. The univariate functional data for each stride were time nor-
malised and registered to the point of the maximum knee flexion angle, which is a clear and
easily identifiable landmark in each stride. Within each dimension, 80 cubic B-spline basis
functions were used to provide a near-lossless representation of the univariate functions. For
each stride, the longitudinal time variable T was created based on the time at which that
stride started, with T = 0 representing the start of the subject’s capture period. This variable
was normalised by dividing by the subject’s maximum capture time, so that T ∈ [0, 1]. The
MFPCA, computed from the univariate basis expansions, yielded K = 27 basis functions to
explain 99.5% of the variance in the multivariate functional data.

3.2 Modelling Results

A constant function and four natural cubic B-splines were used as longitudinal basis functions,
with unstructured Q∗

k and R∗
k matrices. We consider the following model:

yijl(t) = β0(t, Tijl) +
3∑

a=1

xiaβa(t) + speedi × β4(t) + sexi × β5(t) + agei × β6(t)

+ weighti × β7(t) + heighti × β8(t) + ui(t, Tijl) + vij(t) + εijl(t),

where xi1, xi2 and xi3 are dummy-coded variables representing the “Injured more than 2
years ago”, “Injured 1-2 years ago” and “Injured less than 1 year ago” categories of the
retrospective injury status variable, where the reference category is “Never injured”, speedi

is the self-selected running speed of subject i in kmh−1, sexi is a dummy-coded variable for
the sex of subject i (0 = male, 1 = female), agei is the age of subject i in years, weighti is
the weight of subject i in kilograms and heighti is the height of subject i in centimetres. All
numeric variables were centered to make the intercept function more interpretable.

3.2.1 Fixed Effects

Analysis of the functional coefficients of the longitudinal basis functions used to model the
intercept revealed that it was approximately constant in the longitudinal direction. Figure 2
displays the estimated coefficient functions that capture the effects of scalar covariates in our
model. In all three dimensions, the simultaneous confidence bands for the retrospective injury
status coefficient functions contain zero (solid grey horizontal line) for all t, indicating that
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(a) Hip (b) Knee

(c) Ankle

Figure 2: The estimated coefficient functions of the fixed effects from the fitted model. The
black solid line represents the point estimate, the dotted black lines indicate pointwise 95%
confidence intervals and the light blue ribbons represent 95% simultaneous confidence bands.

there is no evidence of a significant difference between any of the categories and the reference
category of “Never injured”. We observe a strong, noticeable effect of self-selected running
speed in all three dimensions, as the simultaneous confidence bands only contain zero around
the time that the point estimate crosses 0. Running at a higher speed is associated with
greater hip flexion at initial contact and late in the swing phase (t > 60%) and greater hip
extension around the time of toe-off (t ≈ 38%), greater knee flexion which is most pronounced
in the stance phase around the time of peak knee flexion angle (t ≈ 69%) and increased
ankle plantarflexion which is most pronounced around the time of maximum plantarflexion
(t ≈ 38%). The coefficient functions for the effect of sex are large in magnitude, reaching
almost 5◦ in the knee and ankle. However, the corresponding confidence bands are wide and
contain zero for almost all t, indicating a lot of uncertainty about this effect. There is limited
evidence of an age, height or weight effect. Although the simultaneous confidence bands for
these coefficient functions do not contain zero at certain points, the magnitude of each effect
is small.

3.2.2 Random Effects

We present analysis of the fitted subject-and-side specific trajectories, which are obtained as
BLUPs of the random effects. Figure 3 displays fits for subjects that were chosen according to
summaries from the model. Firstly, we calculated the integrated squared first derivative with
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(a) Rate of change

(b) Overall change

Figure 3: Observed and fitted values of the coefficients for subjects identified based on
summaries from the model. (a) The top four subjects based on the integrated squared first
derivative of their fitted trajectory with respect to longitudinal time. (b) The top four
subjects based on the overall change during the treadmill run.

respect to longitudinal time of each subject’s fitted profile, which provides a measure of the
rate of change (or deviation from a constant fit) over the course of the treadmill run. Figure
3 (a) displays the first coefficients for the top four subjects ranked according to this metric.
For ease of interpretation, we have only displayed the left side observations. All four subjects
exhibit non-stationary patterns that are captured well by the longitudinal models. The naive
model, which assumes that each individual’s deviation is constant across longitudinal time,
is inadequate. Figure 3 (b) displays another four subjects ranked according to the overall
change in the subject’s fitted profile over the course of the run, calculated as the absolute
difference between the subjects’ fitted profiles at T = 0 and T = 1. Non-stationary trends,
which cannot be captured by the naive model, are evident again. It should be noted that
these summaries were computed based on the full multivariate function but we have displayed
the first coefficient. However, this coefficient captured the largest amount of variance in the
longitudinal direction, so it is a reasonable choice.

As the coefficients in Figure 3 are a level of abstraction away from the multivariate
functional data, we examine the fitted multivariate functions for a single individual. Based
on Figure 3 (b), we choose to display Participant 237 because they exhibited a consistent,
almost-linear evolution. Figure 4 (c) and (d) display the motion-capture animation at the
time of peak knee flexion angle for this subject at the start (stride 1) and end (stride 80) of
the treadmill run, respectively. The difference in the two pictures reflects the changes across
longitudinal time, in particular the greater knee flexion at the end of the treadmill run.
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Figure 4: Individual analysis for Participant 237. (Left) The motion-capture animation for
this subject at the time of peak knee flexion angle at the start of the treadmill run. (Right)
The motion-capture animation for this subject at the time of peak knee flexion angle at the
end of the treadmill run.
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